A Novel Approach for Prefix Minimization using
Ternary Trie (PMTT) for Packet Classification

Sanchita Saha Ray

Department of Information Technology
St. Thomas™ College of Engineering & Technology
Khidderpore, Kolkata, India
e-mail: saharay.sanhcita@gmail.com

Abhishek Chatterjee
Department of Computer Science & Engineering
St. Thomas™ College of Engineering & Technology
Khidderpore, Kolkata, India
e-mail: sweetabhishek2@gmail.com

Surajeet Ghosh

Department of Computer Science & Technology
Indian Institute of Engineering Science and Technology
Shibpur, Howrah, India
e-mail: surajectghosh@ieee.org

Abstract—A novel approach for eliminating the redundant
and overlapped prefixes from a prefix table is proposed here.
This approach reduces the number of prefixes by merging two
prefixes on satisfying some specified conditions and eliminating
any one of them depending on the conditions satisfied by those
two prefixes and also by eliminating duplicate prefixes at the time
of tree creation. To make the system faster, a novel ternary-trie
based minimization algorithm has been proposed in place of
Espresso-1I minimization technique which increases the entire
system complexity super linearly with the increase in number of
prefixes and also exponentially increases the required time to
update the prefix table. The main objective of the proposed
technique is to reduce the storage space requirement for a prefix
table and thereby reduce power consumption and cost factor
associated with TCAM based prefix table by a healthy margin.
The proposed prefix minimization technique shows 62.5%
reduction in routing table size.

Keywords—Prefix Minimization, Packet forwarding, Prefix
Matching, Packet classification, Ternary Trie

1. INTRODUCTION

In an attempt to control the eventual widespread
connectivity breakdown due to exponential growth of global
routing table size, ISPs assisted in keeping the table size as
small as possible, by the deployment of Classless Inter-
Domain Routing (CIDR) and route aggregation [1] during late
2001. This surely slowed the growth to a linear process for
several years, but, with the expanded demand of multi-homing
by the user networks, the growth is once again super-linearly
increased to nearly 500,000 prefixes as in [2]. The deployment
of CIDR, necessitates storing of any arbitrary length (largest
prefix in IPv4: 32 bits and IPv6: 128) prefix in the IP
forwarding table, which poses the main challenge in internet
protocol (IP) address lookup for packet forwarding. As a
result the identification of the best suited next hop (outgoing
port) address for each incoming packet becomes difficult due
to multi-match prefix problem in the IP lookup table (LUT).
The matching technique adopted for selecting the best suited
prefix in the routing table is called Longest Prefix Matching

978-1-4799-4075-2/14/$31.00 ©2014 IEEE

(LPM) [3]. It is seen that the number of possible routes in a
routing table is typically much smaller than the total number
of prefixes present in the routing table. It is observed for some
backbone routers at major US Internet exchange point (IXP)
that, at least five hundred times more prefixes are present
compared to the existent routes in the routing table [1]. This
imbalanced figure of existing routes and the number of
prefixes present in the routing table demands for a steering
approach to reduce the size of the routing table by removing
the redundant prefixes from the table. Recently, several
approaches have been proposed to forward packets using both
trie-based and TCAM-based approaches.

The most adopted hardware solution to perform IP address
lookup in high performance systems is the use of Ternary
Content Addressable Memory (TCAM) based devices [1], [3],
[4], [51, [6], [7], [8], and [9]. The TCAM based approaches
can provide the excellent performance in terms of table look
up capability, but suffer from some inherent shortcomings
viz., less capacity, high price and very high power
consumption. Thus, it is desirable to compact routing table
size so that a smaller number of TCAM chips would be used
in the system. As the number of routing prefixes is increasing
steadily, therefore, an efficient prefix minimization algorithm
is needed to reduce the required number of TCAM chips to
store the prefixes and thereby reduce power. Researchers have
proposed a few approaches to reduce power consumption in
TCAMs, including routing-table compaction and some other
techniques to eliminate the redundant prefixes by using
Espresso-1I minimization technique. However, this takes
excessive time for update because the Espresso-II
minimization algorithm increases the complexity of the entire
system with the increase in number of prefixes in a routing
table [10]. These logic minimization problems suffer from NP-
complete problem and therefore, the solution provided by
Espresso-II is a near optimal solution with finite computing
resources [11]. This inspires to device an approach to provide
exact solution which is presented in this paper.

The main contribution of this paper is divided into two
parts viz., firstly a novel ternary trie based data structure and
secondly an efficient approach based on ternary trie to reduce
the routing table size by removing the redundant and
overlapping prefixes from the routing table. This paper is
organized as follows. Section II briefs the existing prefix
minimization techniques. Section III introduces the concept of
a novel ternary trie. Ternary trie based prefix minimization
technique is explained in Section IV. The performance of the
proposed technique is evaluated in Section V and finally,
Section VI presents some concluding remarks.

II. EXISTING PREFIX MINIMIZATION TECHNIQUES

There are few existing techniques in order to eliminate the
redundant prefixes from the prefix table and many of them [8],
[9] used Espresso-II minimization technique. But Espresso-II
is a complex minimization technique where the minimization
time complexity increases super-linearly with the increased
number of prefixes which makes the system slower. In [10],
the table entries are reduced using Espresso-II algorithm and
the number of inputs to the Espresso-II algorithm is reduced
using prefix overlapping technique as described in [11] and
thereafter, three various techniques are used in parallel to
further reduce the table size. In [11], another technique called
prefix aggregation is introduced in order to further compact
the routing table size. [1] suggested two different techniques
to reduce the number of prefixes, the first one is ‘Pruning’,
which eliminates redundant prefixes by identifying the parent
prefix and another is ‘Mask extension’ which exploits the
flexibility given by TCAM hardware based on Espresso-II.
There are numerous other minimizations techniques [7], [12]
and [4] available which are incapable of producing non-prefix
ternary rules and thereby overlook the chance of further
reduction and in [6] the concept of bit weaving was
introduced.

III. A NOVEL TERNARY TRIE

Most of the prefix minimization algorithms are based on
ESPRESSO-II minimization technique which is a complex
minimization technique, where the minimization time
complexity increases super-linearly with an increased number
of prefixes which makes the system slower. Since in CIDR
format, an IP address is represented using a prefix, therefore,
we require ternary (‘0°, ‘1°, ‘X”) information to represent
them. In reality, no such trie exists which can represent ternary
information. In this connection we proposed a novel trie which
can represent ternary information called ternary trie, and also
proposed an algorithm based on ternary trie to perform prefix
minimization efficiently.

A binary trie is a bit-wise data structure, where each single
bit value (‘0° or ’1°) of a prefix is represented using an edge of
the trie. In our proposed Ternary Trie (TT) structure, we have
kept room for representing ternary information by introducing
three different nodes under the same parent node in the tree.
These three children of a node in the TT are viz., the left child
specified by a bit value ‘0°, the right child, by ‘1’ and the
middle child indicated by ‘X’ (don’t care) as shown in Fig.1.
So, the degree of each internal node in TT could be at most

three. A ternary trie is an ordered tree data structure that is
used to store an associative array where the keys are
ternary strings. The internal nodes in the trie by no means
store the keys (prefixes) which are associated with those
nodes, and instead, their positions in the trie reveal all the keys
which are associated with them. Therefore, an offspring of an
internal node in the trie, share a common forepart of the
prefixes associated with that node.

Root node

Right child

Fig. 1. A basic Ternary Trie (TT)

The trie creation procedure of TT is much similar to that of
the binary trie, but the specialty in the ternary trie is the
inclusion of the third node (middle node) as shown in Fig.2.

Fig. 2. (a)a ternary trie, (b) a binary trie, @ represents a prefix.

The tree structure of a ternary trie and a binary trie are
shown respectively in Fig. 2(a) and 2(b), for the same set of
eight prefixes viz., 000*, 0*01*10% 1011* 1*110* and
111%*. This could be observed from the above figures that, for
a binary trie, a prefix could appear even at the internal nodes
which introduces the difficulty in isolating the prefixes during
tree traversal. Even in case of multi bit trie, the same prefix
isolation problem prevails, therefore, in this paper, we
proposed a novel ternary trie data structure to denote prefixes
only by the leaf nodes of the tree.

IV. TERNARY TRIE-BASED PREFIX MINIMIZATION

As TCAMs are widely used memory chips for packet
classification in networking, it is observed from above
discussions that to reduce the power consumption and power
dissipation of TCAMSs, the number of TCAM entries must be
reduced.

The proposed prefix minimization technique for packet
classification uses the ternary trie-based approach to reduced
the number of TCAM entries. In order to understand how the
proposed ternary trie-based prefix minimization algorithm
works and how the prefixes are minimized, we will explain
using a sample prefix table with prefixes from three different
hop-ids viz., 0, 1 and 2, shown in Table I. The prefixes in
Table I are classified into three groups based on their hop-ids

namely Gy (hop-id: 0), G; (hop-id: 1) and G, (hop-id: 2).
Since, the hop-ids associated with the prefixes must be
maintained even after minimization, therefore, we have chosen
hop-id for the purpose of prefix-classification.

At first, the proposed algorithm groups all the prefixes
according to their next hop id and then each group is treated
separately for the creation of the ternary tree for that group in
order to reduce the number of prefixes. Now, in order to
explain the operational functionality of the novel ternary trie-
based prefix minimization technique, let’s choose prefixes
from G prefix group which contains ten prefixes viz., 01001x,
0101x, 01101x, O111x, 1000x, 1001x, 11101x, 111100x,
111110x and 111111x. The length of the longest prefix in this
prefix group determines the depth (no. of levels) of the tree. In
this particular example, the size of the longest prefix is seven
and hence, the ternary-tree formed using prefixes of G, group
has seven (excluding root, which is considered at L0) different
levels from L1 through L7. In the proposed trie structure, all
the prefixes are made equal length by appending ‘X’ at their
end. Similarly, separate trees are formed using G; and G, group
of prefixes those would have 4 and 6 different levels
respectively. The working of tree minimization algorithm is
done in two phase viz., tree creation phase and tree merging
phase. However, in the first subsection of this section, the
properties of the ternary trie has been described which is used
to build the prefix minimization tree.

TABLE L SAMPLE PREFIX TABLE AND GROUPING OF PREFIXES BASED
ON Hor-IDs
Before Grouping After Grouping
Prefixes | Next Hop ID Prefixes| Next Hop ID
01001x 0 01001x 0 A
0101x 0 0101x 0
01101x 0 01101x 0
01101x 1 0111x 0
01111x 1 1000x 0 > Go
0101001x 2 1001x 0
10011x 2 11101x 0
11101x 2 111100x 0
0111x 0 111110x 0
1000x 0 111111x 0 Z
1001x 0 01101x 1
11101x 0 01111x 1 G
111111x 2 10000x 1
10000x 1 0101001x| 2
111100x 0 10011x 2
111110x 0 11101x 2 G,
111111x 0 111111x 2

A. Ternary trie properties

The proposed algorithm uses a ternary trie to eliminate the
overlapping prefixes and merges two prefixes if they differ by
1-bit at any level. The novel ternary tree data structure has the
following properties-

i) Each node of the tree contains five parts namely level,
data, left child, right child and middle child. The level
contains information regarding the position of the bit in the
data structure, counting of level starts from 0 (root) and
keeps on increasing as the tree grows; data part of a node
in level i contains the value of (L-(i-1))™ bit (where, L is

the length of the longest prefix) of prefixes associated with
that node; left child, right child and middle child contains
pointer to the node’s left, right and middle child
respectively.

ii) The root node of the tree contains a dummy value say ‘R’.

iii) Each node of this tree can have at-most three children
namely left child, right child and middle child. The left
child of a node contains a value ‘0°, right child contains a
value ‘1’ and the middle child contains a value ‘X’ (X:
don’t care).

iv) Each unique path from level 1 (taking root as level 0)
through leaf node of the ternary tree represents an unique
prefix for a certain prefix group.

B. Ternary Tree Creation Phase

The prefixes of a certain group are stored in a 2-D array
‘Gg[i][j]” where K is prefix group number and ‘i’ denotes the
prefix number with 0< i <N (N: number of prefixes) and ‘j’
denotes the bit position in a certain prefix with 0< j <L (L:
length of the longest prefix in the considered prefix group) in a
certain prefix group.

The tree creation procedure begins with root node
formation and a dummy value (say ‘R’) is assigned to the root
node. The novel ternary tree creation process needs a pointer
‘Ptr’ to traverse the tree in order to find the proper position for
inserting a node in a certain level of the tree. At first, the
pointer ‘Ptr’ is initialized with the address of the root node. If
the MSB of a certain prefix is found to be 0, then the prefix
would be inserted in the left sub-tree and if it is found to be 1,
then it would be in the right sub-tree and else (MSB: X) it
would be in the middle sub-tree of the root. This process
continues for all the bits of a prefix. The recursive procedure
for the ternary tree creation is given below.

Ternary Tree Creation Algorithm:

createNode(newValue, TreePtr &Ptr)
begin
TreePtr newNode;
if (Ptr == NULL)
newNode = new TreeNode;
newNode -> name = newValue
newNode -> left = NULL;
newNode -> middle = NULL;
newNode -> right = NULL;
Ptr = newNode;
else if (newValue == 0)
createNode(newValue, Ptr -> left);
else if (newValue == X)
createNode(newValue, Ptr -> middle);
else
createNode(newValue, Ptr -> right);
end

After inserting a single prefix in the tree, the value of the
three pointers ‘Ptr’ are initialized to the address of the root
node and the same process as described above is repeated for
all other prefixes in a particular prefix group (Gy). Now, if two
prefixes are identical then only the first one amongst them is

inserted and this automatically removes the duplicate prefix a
at the time of tree creation with no extra effort for the detection
and removal of those prefixes. In Fig. 3 a ternary-trie has been
created with prefixes from G, prefix-group of TABLE I.

Fig. 3. Ternary-Trie using prefixes of Gy Group

C. Ternary -Tree Merging Phase

Once the tree has been created, thereafter the tree
minimization process starts. The minimization process begins
at (leaf—l)th level and continues until (root-l)th level. Any two
nodes from the same level of the tree could be merged if those
satisfy Condition I and any one of the following four
conditions as stated in Condition II.

Condition I. The two nodes which could be merged together
must belong to the same parent node.
Condition II. Nodes those could be merged together, must
satisfy any one of the following four conditions.
i) If those two nodes have one identical sub-tree (left,
right or middle sub tree).
ii) If those two nodes have identical combination of any
two sub-trees of their own.
iii) If those two nodes have identical left, right and middle
sub-trees.
iv) If those two nodes are the leaf nodes of the tree.

After establishing the criterion for merging of any two
nodes at a given level of the constructed tree, now the actual
procedure of prefix minimization would be explained. The
original prefix tree needs to be reformed in order to reflect the
changes after satisfying the merging criterion for any two
nodes for the reduction (merging) of the tree.

Trie Merging Procedure:

Step 1: The rules for transforming the tree are given below.
a)If any two nodes satisfy criterion I and either of II
(i) or II (ii), then again sub-tree formation can have
few cases depending upon the presence of the
middle node.

Case I: If the parent node of those two nodes doesn’t
have a middle child, then a new node
(middle node) under the same parent is

created. This newly created middle node
inherits only the identical sub-tree part(s) of
those two nodes. However, their dissimilar
sub-tree parts are kept intact with their
respective nodes under the same parent
node.

Case II: If none of the two nodes which could be
merged, is a middle node and the parent
node of those two nodes has a middle child,
then these two node’s identical sub-tree(s)
are removed by inserting them under the
pre-existent middle node of their parent
node. However, their dissimilar sub-tree
part(s) are kept intact with their respective
nodes under the same parent node. However,
insertion of the new sub-tree(s) under the
middle node should not conflict with the
existing sub-trees of that node and no
duplicate nodes are inserted at any level of
the sub-tree.

Case III: If one of the two nodes (which are to be
merged together) is a middle node, then only
the identical sub-tree part(s) is removed
from the node other than the middle node,
however, the unmatched sub-tree part(s) are
kept intact with that node.

b)If those two nodes satisfy criterion I and IT (iii),

then again sub-tree formation can have few cases
depending upon the presence of the middle node.

Case I: If the parent node of the two (left and right)
nodes which are to be merged together,
doesn’t have a middle child, then directly
those two child nodes are removed by
merging them into a single node and
designated as the middle node of their parent
node. The newly created middle node would
contain the sub-trees of any one of those two
removed nodes.

Case II: If none of the two nodes which could be
merged is a middle node, and the parent of
those two nodes have a middle child, then
these two nodes along with their sub-trees
are directly removed by inserting their sub-
trees under the pre-existent middle node of
their parent. However, the insertion of the
new sub-tree(s) in the middle node no way
conflict or duplicate the pre-existent sub-
trees of that node.

Case III: If one of the two nodes (which are to be
merged together) is a middle node, then the
node other than the middle node is removed
completely from the tree.

If those two nodes satisfy criterion I and II (iv),
then the procedure of sub-tree formation after
merging of nodes at leaf level is given below. Here,
the only node which could appear as a leaf node for
any parent node in the tree is the middle node. This

violates the condition stated in (I) and therefore, no
merging of nodes at this level is possible. sibling
Step 2: Step 6 is repeated from the leaf level to the level
before the root level.
Step 3: Step 4 through Step 6 is repeated for all the prefix
groups.
Step 4: All the resultant groups are merged to get the
minimized prefix table.

To illustrate the idea of prefix minimization using ternary
trie-based approach, let us consider the prefixes from Fig.3.
The merging procedure starts checking from (leaf-1)th level
i.e., from 6th level, as it is already seen that, minimization at
leaf level is not possible.

Minimization at Level 6:

At level 6 of the original ternary-tree (shown in Fig.3 by
shaded triangle), it is observed that the 9™ and the 10™ nodes at
L6 from L.H.S to R.H.S having identical middle sub-tree and
moreover, these two nodes belong to the same parent node at
L5. Therefore, these two nodes could be merged together into
a single node and their identical sub-tree part(s) comes under
this newly created node, which is indicated by the middle node
(‘X’) of their parent node. However, as those two nodes at
Level 6 don’t have any other dissimilar sub-tree(s), so these
nodes are permanently removed from the tree. No further
minimizations could be done at this level and the resultant tree
after minimization is shown in Fig. 4. If the tree is traversed
from level 1 through level 7, then, all the unique prefixes we
have are 01001x, 0101x, 01101x, O0111x, 1000x, 1001x,
11101xx, 111100x and 11111xx.

Fy--- — e = F - - - """"l""

I I I@ L6

Fig. 4. Tree after minimization at L6

Minimization at Level 5:

Now, the algorithm will move backward to level 5 and at
this level no two nodes belonging to the same parent node
having identical sub-tree(s) as we can see from Fig. 4.
Therefore, minimization at this level is not possible, so, it
would provide same result as we receive at level 6.

Minimization at Level 4:

At this level, we find two pairs of nodes for merging which
is shown using shaded portion in Fig. 4. The first pair of nodes
from L.H.S to R.H.S is the 5™ and 6™ nodes in L4, those
having identical middle sub-tree and therefore, could be

merged to a single node with the identical middle sub-tree
under it. Similarly the second pair of nodes is 7" and 8" nodes
from the L.H.S to R.H.S in L4 having identical right sub-tree
and therefore, merged into a new node, indicated as middle
node of their parent with their common right sub-tree part
under this newly created node. However, as it can be seen
from Fig.4, that the 8" node (at L4) also having a left sub-tree,
therefore, this node is kept along with its left sub-tree under its
parent node at L3 shown in Fig. 5.

Fig. 5. Tree after minimization at L4

Minimization at Level 3:

At this level, we find one pair of nodes for merging which
is indicated by the shaded portion in Fig. 5. The pair of nodes
which could be merged in L3 is the 1* and the 2™ node from
L.H.S to R.H.S. These two nodes of L3 having identical left
and right sub-tree and therefore, could be merged to a single
node indicated by the middle child of their parent node with
the same left & right sub-trees under it. Since, these two nodes
of L3 don’t have any other mismatched sub-tree part, hence,
these nodes are entirely replaced from the original tree by the
inclusion of the newly created node (middle node indicated by
‘X’) under their parent node, which is shown in Fig.6.

Fig. 6. Tree after minimization at L3

Minimization at Level 2 & 1:

Now, the algorithm will move backward to level 2 and it is
clear from Fig.7 that, at this level no two nodes belonging to
the same parent node with identical sub-tree(s) are found, as a
result, minimization at this level is not possible. Therefore, no
further minimization in the number of prefixes after the
minimization at L3 is made, and so after minimization at this
level (L2) it would provide same prefixes as we received at
level 3. Similarly, at level 1 also, no two nodes belonging to
the same parent node (root node) having identical sub-tree(s)
and consequently, minimization in terms of prefix merging at
this level also not possible.

TABLE II. MINIMIZED NUMBER OF PREFIXES AFTER APPLYING PREFIX
MINMIZATION TECHNIQUE ON Gy GROUP OF TABLE I
Prefixes
Before After Minimization at various levels
Minimization |L7 L6 L5 L4 L3 L2 | L1

01001x 01001xx 01001xx | 01x01xx

0101x 0101xxx 0101xxx | 01x1xxx

01101x 01101xx 01101xx | 100xxxx

0111x 0111xxx 0111xxx | 11Ix1xx

1000x 1000xxx 100xxxx | 111100x

1001x Tol100Ixxx | T [11xIxx - T
11101x 11101xx 111100x -
111100x 111100x - -
111110x 11111xx - -
111111x - - -

As a result, the tree after minimization at L3 is the final
minimized tree and the minimized set of prefixes is shown in
Table II. Thus, the final set of prefixes in G, group are
01x01xx, Olxlxxx, 100xxxx, 111x1xx and 111100x, which
shows 50% reduction in the number of prefixes compared to
the total number of prefixes present before minimization.

V. SIMULATION RESULT

The proposed ternary-trie based prefix minimization
algorithm is tested for some publicly available Border
Gateway Protocol (BGP) [2] routing tables from the public
networks as MAE-EAST, MAE-WEST, AADS and PacBell.
These different test cases with different capacity are listed in
Table III. It can be noticed from the following Table that, the
percentage (%) of prefix minimization shows up to 62.5,
which saves TCAM space, number of active TCAM cells,
power consumption with a healthy margin.

TABLE IIL SIMULATION RESULTS FOR VARIOUS TEST CASES
No of Prefixes %
Minimization

Test Case Before After P=((N-N;)/N) *
Minimization (N) | Minimization (N,) 100
Mae-East 353301 162520 54
Mae-West 442090 214856 514
Pacbell 238519 99462 583
Aads 437933 164224 62.5

VI. CONCLUSION

It is evident from Table III that the prefix reduction or
minimization factor primarily depends on the nature of the
prefixes than the number of prefixes present for minimization.

Though, there could be the possibility of more number of
redundant prefixes to appear as the number of prefixes
increase in the prefix table for a fixed prefix length. The
ternary trie based prefix minimization approach proposed here
shows up to 62.5% prefix table size reduction. This routing
table size reduction directly saves a large amount of storage
space and thereby shows the reduction in power consumption
and cost factor of the TCAM based prefix table by a healthy
margin. Thus, the TCAM storage space saved due to the
reduction in the number of prefixes could have following
advantages: firstly the number of TCAM entries needed to
store the prefixes are reduced, the cost is also reduced due to
either lesser number of TCAM chips or a smaller capacity
TCAM chip could be used. Secondly, the number of active
cells at the time of comparison will also be reduced so, the
power consumption is also reduced. Moreover, the space thus
saved could be used for accommodating new prefixes in the
rule table. Since, the proposed prefix minimization technique
is trie based data structure so, only the tree traversal and some
extra condition checking are needed for this technique, which
makes this algorithm more efficient and results in high
throughput compared to the techniques using Espresso-II
minimization technique. Furthermore, this technique could be
easily deployed in the existing system without significant
changes and would be suitable for both IPv4 and IPv6 prefix
format.

REFERENCES

[1] Huan Liu, “Reducing Routing Table Size Using Ternary-CAM”, Hot
Interconnects 9, pp. 69-73, 2001.

[2] Potaroo - BGP Table data, http://bgp.potaroo.net/index-bgp.html,
Accessed on 30th June 2014.

[3] S.S.Ray, A. Chatterjee, S. Ghosh, "A Hierarchical High-throughput and
Low Power Architecture for Longest Prefix Matching for Packet
Forwarding", Proc. of IEEE International Conference on Computational
Intelligence and Computing Research, pp. 628-631, 2013.

[4] C. R. Meiners, A. X. Liu, and E. Torng. “TCAM Razor: A systematic
approach towards minimizing packet classifiers in TCAMs”, In Proc.
IEEE ICNP, pages 266-275, October 2007.

[5] A.X. Liu and M. G. Gouda, “Complete redundancy removal for packet
classifiers in TCAMs”, IEEE Transactions on Parallel and Distributed
Systems Vol. 21, No. 4, pp. 424-437, April 2010.

[6] Chad R. Meiners, Alex X. Liu, Eric Torng, “Bit Weaving: A Non-prefix
Approach to Compressing Packet Classifiers in TCAMs”, In Proc. of the
17th IEEE ICNP, 2009.

[71 Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla,
“Packetclassifiers in ternary CAMs can be smaller”, In Proc. ACM
Sigmetrics, pages 311-322, 2006.

[8] A. Mahini, G. Branch, R. Berangi, S. Fatemeh, Khatami Firouzabadi
“Low Power Tcam Forwarding Engine for IP Packets”, IEEE Military
Communications Conference, MILCOM, pp. 1 - 7, 2007.

[91 V. C. Ravikumar, Rabi N. Mahapatra, “TCAM Architecture forlP
lookup Using Prefix Properties,” IEEE Micro, vol. 24, no. 2, pp. 60-69,
April 2004.

[10] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, “Logic Minimization Algorithms for VLSI Synthesis.
Kluwer”, Academic Publishers, 1984.

[11] R. Rudell and A. Sangiovanni-Vincentelli, “Espresso-MV: Algorithms
for multiple-valued logic minimization”, In Proc. of the IEEE 1985
Custom Integrated Circuits Conference, pp. 230-234, 1985.

[12] R. Draves, C. King, S. Venkatachary, and B. Zill. “Constructing optimal
IP routing tables,” In Proc. IEEE INFOCOM, pages 88-97, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

